跳到主要内容

Table 1 Data about the elastic and viscoelastic properties of different muscle tissues

来自:How muscle stiffness affects human body model behavior

弹性(kPa) 粘度(Pa * s) 样本 测量技术
Basford et al. (2002) [65 剪切模量G
16.16 ± 00.19 kPa(tissue stiffness defined as equal to G in study)
没有数据 所支配腓肠肌(人类) Magnetic Resonance Elastography (MRE)
Chen et al. (1996) [66 杨氏模量
2.12 ± 0.91 kPa(超声波)
1.53 ± 0.31 kPa英斯特朗)(
没有数据 肌肉longissimus(牛) Ultrasound and Instron methods
Chen et al. (2009) [67 29个kPa(along the muscle fiber)
12个kPa(across the muscle fiber)
9.9 Pa *年代(纤维)
5.7 Pa *年代(在纤维)
横纹肌纤维[体外](牛) Shearwave dispersion ultrasound vibrometry (SDUV)
Debernard et al. (2013) [68 剪切模量G
3.67 ± 0.71 kPa被动(VM)
11.29±1.04 kPa(VM, 20%活动)
6.89±1.27 kPa(SR,被动)
1.61 ± 0.37 kPa(脂肪)
4.5±1.64 Pa*s被动(VM)
12.14 ± 1.47 Pa*s(VM, 20%活动)
6.63 ± 1.27 Pa*s(SR,被动)
进行股内侧肌(VM)
肌肉缝匠肌(SR)
皮下(结缔组织)和脂肪组织
Multifrequency magnetic resonance elastography (MMRE)
Dresner et al. (2001) [69 剪切刚度G
23.8 ± 6.68 kPa(牛)
Ø27.3 kPa范围:8 - 34 kPa)(人类)
没有数据 Muscle tissue (ex vivo) (bovine)
肌肉肱二头肌(人类)
绝笔
Eby et al. (2013) [70 剪切模量G
5.81 kPa(at 90° elbow angle)
没有数据 上肢肌肉(porcine, whole muscle specimen) 横波弹性成像(SWE)
Gennisson et al. (2010) [71] (Eby et al. (2013) [70]) 5.4 kPa(at 90° elbow angle)
29.54 kPa(at 165° elbow angle)
没有数据 肌肉肱二头肌(人类) 无创超声剪切成像技术
Hoyt et al. (2008) [72 剪切模量G
5.87 kPa(放松,射频,V1)
11.17 kPa(简约,射频,V1)
5.33 kPa(放松,射频V2)
9.70 kPa(简约,射频,V2)
6.09 kPa(放松,BB, V1)
8.42 kPa(简约,BB, V1)
8.68 kPa(放松,BB, V2)
11.88 kPa(简约,BB, V2)
4.45 kPa(BF, V1)
4.98 kPa(毫克,V1)
9.14 Pa *年代(放松,射频,V1)
11.88 Pa *年代(简约,射频,V1)
9.72 Pa *年代(放松,射频V2)
11.60 Pa *年代(简约,射频,V2)
10.55 Pa *年代(放松,BB, V1)
11.90 Pa *年代(简约,BB, V1)
9.73 Pa *年代(放松,BB, V2)
13.22 Pa *年代(简约,BB, V2)
9.13 Pa *年代(BF, V1)
9.26 Pa *年代(毫克,V1)
进行股直肌(RF)
进行股二头肌(男朋友)
所支配腓肠肌(毫克)
肌肉肱二头肌(BB)(人类)
两个志愿者(V1, V2)
Sonoelastography
迈尔斯等人(1998)[25 杨氏模量E
1750 ± 1180 kPa(被动,1 / s)
2450 ± 800 kPa(被动,10 / s)
2790 ± 670 kPa(被动,25 / s)
970 ± 340 MPa(active, average strain rates)
没有数据 Musculus tibialis anterior (New Zealand white rabbit)
活动:19.3 N, nerve excitation, resulting tetanic true stress level
1750
Actuator displacement measured via linear variable differential transformer
光学数据记录
Krouskop et al. (1987)[26 年轻的弹性模量
6.21 ± 0.48 kPa(放松)
35.85 ± 1.38 kPa(mild, supporting 2.26 kg weight)
108.94 ± 2.07 kPa(最大)
没有数据 (human adult missing his lower right leg, from above knee)
六个志愿者
Measurement at the femur
m .股中间部/m .腹直肌
Doppler ultrasonic system and Instron
Levinson et al. (1995)[27 杨氏模量
30 Hz测量:79 ± 29 kPa
103±26 kPa
For corresponding loads of 0 kg, 7.5 kg and 15 kg
60 Hz测量:25±6.75 kPa
127±65 kPa
For corresponding loads of 0 kg, 7.5 kg and 15 kg
Unable to quantify viscosity 进行股四头肌
Ten volunteers 30 Hz measurement: (human)
Sonoelastography
Ringleb et al. (2007) [73 剪切刚度
3.7 kPa(1 d)4.4 kPa(2 d)(放松)
9.5 kPa(1 d)9.22 kPa(2D)(最大自愿收缩量的20%)
没有数据 进行股内侧肌
五个志愿者(人类)
MRE correlated to electromyographic data
一维和二维测量技术
Shinohara et al. (2010) [29 杨氏模量
40.6 ± 1.0 kPa(放松)
258.1 ± 15.0 kPa(自愿收缩30%)
16.5 ± 1.0 kPa(放松)
225.4 ± 41.0 kPa自愿收缩30%)
14.5 ± 2.0 kPa(放松)
55.0 ± 5.0 kPa(自愿收缩30%)
没有数据 Human volunteer (age 42)
骶胫骨前肌
所支配腓肠肌
肌肉比目鱼肌
Ultrasound shear wave imaging
Urban and Greenleaf (2009) [74 剪切弹性
12.65 kPa(纤维)
5.32 kPa(在整个纤维)
剪切粘度
2.91 Pa *年代(纤维)
1.05 Pa *年代(在整个纤维)
Muscle fibers of muscle tissue (Porcine, ex vivo) 超声脉冲反射波法
Tonebursts of 3.0 MHz with lengths ofTb= 200 μ s以100 Hz的速率重复
Urban等人(2009)[75 剪切弹性
11.98 ± 0.43 kPa(200µ年代)
12.50 ± 0.17 kPa(400 μ s)(沿纤维)
5.11 ± 0.11 kPa(200µ年代)
4.99 ± 0.06 kPa(400 µs) (across fibers)
剪切粘度
3.51 ± 0.21 Pa*s(200µ年代)
2.92 ± 0.09 Pa*s(400 μ s)(沿纤维)
1.26±0.11 Pa*s(200µ年代)
1.57 ± 0.05 Pa*s(400 µs) (across fibers)
Muscle fibers of muscle tissue (porcine, ex vivo) 超声脉冲反射波法
Tonebursts of 3.0 MHz with lengths ofTb = 200 µs andTb = 400 µs repeated at a rate of 100 Hz
  1. 各种各样的测量技术都可以归入“弹性成像”或“弹性成像”领域[16] were used to obtain this data.Data were collected and assembled from publications listed in the column ‘Source’ by the author of this work